3.1112 \(\int \frac{\sqrt{e x} (c+d x^2)}{(a+b x^2)^{5/4}} \, dx\)

Optimal. Leaf size=99 \[ \frac{d (e x)^{3/2}}{b e \sqrt [4]{a+b x^2}}-\frac{\sqrt{e x} \sqrt [4]{\frac{a}{b x^2}+1} (2 b c-3 a d) E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{\sqrt{a} b^{3/2} \sqrt [4]{a+b x^2}} \]

[Out]

(d*(e*x)^(3/2))/(b*e*(a + b*x^2)^(1/4)) - ((2*b*c - 3*a*d)*(1 + a/(b*x^2))^(1/4)*Sqrt[e*x]*EllipticE[ArcCot[(S
qrt[b]*x)/Sqrt[a]]/2, 2])/(Sqrt[a]*b^(3/2)*(a + b*x^2)^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.0482421, antiderivative size = 99, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {459, 284, 335, 196} \[ \frac{d (e x)^{3/2}}{b e \sqrt [4]{a+b x^2}}-\frac{\sqrt{e x} \sqrt [4]{\frac{a}{b x^2}+1} (2 b c-3 a d) E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{\sqrt{a} b^{3/2} \sqrt [4]{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[e*x]*(c + d*x^2))/(a + b*x^2)^(5/4),x]

[Out]

(d*(e*x)^(3/2))/(b*e*(a + b*x^2)^(1/4)) - ((2*b*c - 3*a*d)*(1 + a/(b*x^2))^(1/4)*Sqrt[e*x]*EllipticE[ArcCot[(S
qrt[b]*x)/Sqrt[a]]/2, 2])/(Sqrt[a]*b^(3/2)*(a + b*x^2)^(1/4))

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 284

Int[Sqrt[(c_.)*(x_)]/((a_) + (b_.)*(x_)^2)^(5/4), x_Symbol] :> Dist[(Sqrt[c*x]*(1 + a/(b*x^2))^(1/4))/(b*(a +
b*x^2)^(1/4)), Int[1/(x^2*(1 + a/(b*x^2))^(5/4)), x], x] /; FreeQ[{a, b, c}, x] && PosQ[b/a]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 196

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(5/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{\sqrt{e x} \left (c+d x^2\right )}{\left (a+b x^2\right )^{5/4}} \, dx &=\frac{d (e x)^{3/2}}{b e \sqrt [4]{a+b x^2}}-\frac{\left (-b c+\frac{3 a d}{2}\right ) \int \frac{\sqrt{e x}}{\left (a+b x^2\right )^{5/4}} \, dx}{b}\\ &=\frac{d (e x)^{3/2}}{b e \sqrt [4]{a+b x^2}}-\frac{\left (\left (-b c+\frac{3 a d}{2}\right ) \sqrt [4]{1+\frac{a}{b x^2}} \sqrt{e x}\right ) \int \frac{1}{\left (1+\frac{a}{b x^2}\right )^{5/4} x^2} \, dx}{b^2 \sqrt [4]{a+b x^2}}\\ &=\frac{d (e x)^{3/2}}{b e \sqrt [4]{a+b x^2}}+\frac{\left (\left (-b c+\frac{3 a d}{2}\right ) \sqrt [4]{1+\frac{a}{b x^2}} \sqrt{e x}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{a x^2}{b}\right )^{5/4}} \, dx,x,\frac{1}{x}\right )}{b^2 \sqrt [4]{a+b x^2}}\\ &=\frac{d (e x)^{3/2}}{b e \sqrt [4]{a+b x^2}}-\frac{(2 b c-3 a d) \sqrt [4]{1+\frac{a}{b x^2}} \sqrt{e x} E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{\sqrt{a} b^{3/2} \sqrt [4]{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.100897, size = 77, normalized size = 0.78 \[ \frac{x \sqrt{e x} \left (\sqrt [4]{\frac{b x^2}{a}+1} (2 b c-3 a d) \, _2F_1\left (\frac{3}{4},\frac{5}{4};\frac{7}{4};-\frac{b x^2}{a}\right )+3 a d\right )}{3 a b \sqrt [4]{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[e*x]*(c + d*x^2))/(a + b*x^2)^(5/4),x]

[Out]

(x*Sqrt[e*x]*(3*a*d + (2*b*c - 3*a*d)*(1 + (b*x^2)/a)^(1/4)*Hypergeometric2F1[3/4, 5/4, 7/4, -((b*x^2)/a)]))/(
3*a*b*(a + b*x^2)^(1/4))

________________________________________________________________________________________

Maple [F]  time = 0.034, size = 0, normalized size = 0. \begin{align*} \int{(d{x}^{2}+c)\sqrt{ex} \left ( b{x}^{2}+a \right ) ^{-{\frac{5}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(1/2)*(d*x^2+c)/(b*x^2+a)^(5/4),x)

[Out]

int((e*x)^(1/2)*(d*x^2+c)/(b*x^2+a)^(5/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x^{2} + c\right )} \sqrt{e x}}{{\left (b x^{2} + a\right )}^{\frac{5}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(1/2)*(d*x^2+c)/(b*x^2+a)^(5/4),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)*sqrt(e*x)/(b*x^2 + a)^(5/4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{\frac{3}{4}}{\left (d x^{2} + c\right )} \sqrt{e x}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(1/2)*(d*x^2+c)/(b*x^2+a)^(5/4),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^(3/4)*(d*x^2 + c)*sqrt(e*x)/(b^2*x^4 + 2*a*b*x^2 + a^2), x)

________________________________________________________________________________________

Sympy [C]  time = 16.9099, size = 94, normalized size = 0.95 \begin{align*} \frac{c \sqrt{e} x^{\frac{3}{2}} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{4}, \frac{5}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac{5}{4}} \Gamma \left (\frac{7}{4}\right )} + \frac{d \sqrt{e} x^{\frac{7}{2}} \Gamma \left (\frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{5}{4}, \frac{7}{4} \\ \frac{11}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac{5}{4}} \Gamma \left (\frac{11}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(1/2)*(d*x**2+c)/(b*x**2+a)**(5/4),x)

[Out]

c*sqrt(e)*x**(3/2)*gamma(3/4)*hyper((3/4, 5/4), (7/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(5/4)*gamma(7/4)) + d*
sqrt(e)*x**(7/2)*gamma(7/4)*hyper((5/4, 7/4), (11/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(5/4)*gamma(11/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x^{2} + c\right )} \sqrt{e x}}{{\left (b x^{2} + a\right )}^{\frac{5}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(1/2)*(d*x^2+c)/(b*x^2+a)^(5/4),x, algorithm="giac")

[Out]

integrate((d*x^2 + c)*sqrt(e*x)/(b*x^2 + a)^(5/4), x)